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A B S T R A C T   

This work reviews various studies of hydraulic and pneumatic tomography for estimation of flow properties of 
fractured geologic media with hydraulic and pneumatic tomography. The underlying conceptual inversion 
models can be broadly classified as continuum and discrete fracture network models and deterministic and 
stochastic approaches. A heterogeneous continuum method applies porous media parameters, while a DFN 
approach utilizes structural and hydraulic properties of fractures. An overview of field, laboratory, and synthetic 
studies with applications of hydraulic, pneumatic, or tracer tomography for the characterization of fractured 
geologic media shows that most studies rely on a heterogeneous continuum conceptual model and geostatistical 
methods to achieve a solution to the inverse problem. The application of a heterogeneous continuum model 
results in hydraulic properties that are representative of both fracture and matrix. Therefore, this approach may 
be more operationally useful for large scale sites with a non-negligible hydraulic conductivity of the rock matrix 
and high fracture intensity. The flow properties of single fractures can be estimated by applying a discrete 
fracture network (DFN) model. However, assumptions concerning fracture patterns and corresponding flow 
properties can lead to an oversimplified geological model. Possibilities for future research include integrating 
additional data and results from other inversion methods, the application of neural networks for inversion, the 
implementation of inversion results for the prediction and optimization of processes according to the planned 
application at the site, and opportunities for real-time inversion.   

1. Introduction 

Open fractures represent the preferential pathways for flow and 
transport in an otherwise intact rock matrix. They often form a network 
that results in a complex flow field depending on the size, geometry, and 
connectivity of fractures, and the hydraulic properties of the matrix. 
Despite the significant challenge to resolve these networks and to reli-
ably describe their hydraulic properties, fractured sites are the target for 
various applications in hydrogeology and engineering. For instance, 
fractured aquifers host important groundwater resources (Chandra 
et al., 2019; Spencer et al., 2021; Wilske et al., 2020). Open fractures are 
also the main conduits for contaminant transport affecting groundwater 
resources (Berkowitz, 2002; Hadgu et al., 2017; Neuman, 2005). 
Extraction of geothermal energy or petroleum resources and seques-
tration of carbon dioxide rely on well-connected fracture networks by 
generating new fractures or by opening already existing ones through 
hydraulic, thermal, or chemical stimulation. Moreover, the properties 

and the distribution of fractures are crucial for the evaluation of po-
tential sites for nuclear waste repositories (Follin et al., 2014; Li et al., 
2022), for the description of an excavation-induced damaged zone 
around tunnels and openings (Armand et al., 2014; de La Vaissière et al., 
2015; Jalali et al., 2023), and for mining and extraction of minerals 
(Trabucchi et al., 2022). In all these different application areas, models 
and in particular specialized high-fidelity simulation tools are essential 
for improved understanding of subsurface processes. However, the 
applicability of these models depends on the reliability of fractured site 
characterization. 

The fundamental issues and challenges regarding the characteriza-
tion of fractured rocks for flow and transport quantification are dis-
cussed by Berkowitz (2002) and Neuman (2005). In contrast to studies 
reviewing monitoring and simulation methods for fractured sites (e.g., 
Berre et al., 2019; Lei et al., 2017; Viswanathan et al., 2022), this review 
focuses on the static characterization of the structural and hydraulic 
properties of fractured rocks with hydraulic and pneumatic tomography. 
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A general understanding of the structural properties of fractured rock 
sites, such as fracture intensities or prevalent fracture orientations, is 
derived by analyzing outcrops or evaluating the parameters of fractures 
intercepted by boreholes with borehole core samples or optical or 
acoustic televiewers (Armand et al., 2014; Barthélémy et al., 2009; 
Chandra et al., 2019; Follin et al., 2014; Ishibashi et al., 2016; Krietsch 
et al., 2018; Ma et al., 2022; Massiot et al., 2017; Pavičić et al., 2021; 
Ren et al., 2018; Vogler et al., 2018; Yin and Chen, 2020). The inter-
pretation of single- and cross-borehole pumping/injection or tracer tests 
provides information about the hydraulic properties of the fracture 
network. The joint inversion of the recorded data from multiple tests is 
called hydraulic (HT), pneumatic (PT), or tracer (TT) tomography. 
These tomographic methods yield a two-dimensional (2D) or three- 
dimensional (3D) image of subsurface heterogeneity. Fractured rock 
sites typically pose a significant challenge for the application and eval-
uation of pumping/injection and tracer tests due to the sharp contrast 
between permeable fractures and the surrounding rock matrix. 

Geophysical methods, such as stress-based tomography, electrical 
resistivity, seismic reflection, or ground penetrating radar offer only an 
indirect link between the hydraulic properties and the measured signal 
(Afshari Moein et al., 2018; Day-Lewis et al., 2017). A summary of 
various surface-based and borehole logging geophysical technologies 
suitable for the characterization of fractured media is provided by Day- 
Lewis et al. (2017). They also describe the measured parameters and 
indicate the potential target application of each method. 

Cardiff and Barrash (2011) review studies utilizing HT and propose a 
procedure for the application of HT to the inversion of 3D unconfined 
permeable aquifers by conducting synthetic test cases. The character-
ization of fractured geologic media with a heterogeneous continuum 
conceptual model is reviewed by Illman (2014) discussing the benefits of 
HT over traditional characterization and modeling approaches. In our 
review, we discuss recent developments and challenges in fractured site 
characterization by HT and PT, such as the application of a discrete 
fracture network (DFN) model. For this purpose, we provide a theoret-
ical overview of different conceptual models, inversion methods, and 
their application in practice in Section 2. In the subsequent section, we 
summarize studies concerning the characterization of fractured rock 
sites with HT, PT, and TT. This leads to a comparison between contin-
uum and discrete conceptual models of fracture networks in Section 4. 
Finally, we discuss possible research directions in Section 5. 

2. Overview of inversion methods applicable in fractured 
geologic media 

2.1. Geometry of fracture networks 

Fractures are mechanical discontinuities with a predominant direc-
tion, i.e., a void space confined on two sides by the surface of the intact 
rock. The length of a fracture can be variable ranging from centimeters 
to kilometers while the fracture aperture, i.e., the distance between 
fracture surfaces, is small compared to its length. The aperture of a 
fracture depends on the properties of the rock surfaces. Their fluctua-
tions determine the local aperture distribution and are commonly 
described by statistical methods, such as a probability density function 
of the surface fluctuations, an autocorrelation function describing the 
nature of each surface, and an intercorrelation function to relate the 
fluctuations of the upper and lower surface (Adler et al., 2013; Mour-
zenko et al., 2018; Vickers et al., 1992; Vogler et al., 2017). 

The geometric properties of fracture networks are characterized by 
the fracture intensity, the network connectivity, and the spatial corre-
lation of the properties of individual fractures, mainly the aperture, 
length, and orientation of fractures (Berkowitz, 2002). The parameters 
of the fracture network can be described by statistical distributions, such 
as the power law distribution (Bour and Davy, 1997; de Dreuzy et al., 
2012; Hyman et al., 2019). Thereby, the term fracture network implies 
an impervious or low-permeable rock matrix, such as crystalline or 

metamorphic rocks. In contrast, a fractured porous medium has a non- 
negligible matrix permeability allowing for fluid exchange between 
fractures and the adjoining matrix (Adler et al., 2013; Berkowitz, 2002; 
Berre et al., 2019). 

2.2. Experimental setup for pumping/injection or tracer tests 

The pumping/injection or tracer tests that we are studying have a 
common principle. They repeatedly perturb the system under investi-
gation by pumping or injecting some fluid or tracer into numerous 
borehole intervals (Fig. 1). To achieve this, various borehole intervals 
are isolated using packer systems, FLUTe liners, or grouting. Signals 
generated by this procedure are recorded at multiple monitoring in-
tervals. The aim of these tests is to establish a relationship between the 
recorded signals and the connectivity or hydraulic properties of the flow 
paths between borehole intervals. 

Single- and cross-borehole pumping/injection or tracer tests char-
acterize the local hydraulic or pneumatic properties around a borehole 
interval (Brixel et al., 2020a; Guzman et al., 1996; Hsieh et al., 1983; 
Illman and Neuman, 2000; Ren et al., 2018), or the hydraulic or pneu-
matic properties of the connection between several intervals (Brixel 
et al., 2020b; Chuang et al., 2017; de La Vaissière et al., 2015; Hsieh 
et al., 1985; Frampton and Cvetkovic, 2010; Illman and Neuman, 2001; 
Jalali et al., 2018; Le Borgne et al., 2006; Paillet, 1995; Paillet and 
Morin, 1997; Tiedeman et al., 2010), the velocity distribution (Kang 
et al., 2015), transport properties (Cvetkovic et al., 2010; Cvetkovic and 
Cheng, 2011; Kittilä et al., 2019), or the effects from hydraulic stimu-
lation (Amann et al., 2018; Kittilä et al., 2020). Moreover, they are 
applied for constraining the hydraulic properties of simulation models 
(Cvetkovic et al., 2007; Follin et al., 2014; Li et al., 2022). Applied tracer 
injections include salt (Chuang et al., 2017; Doetsch et al., 2012; 
Giertzuch et al., 2021a; Giertzuch et al., 2021b; Jardani et al., 2013), 
reactive chemicals (Illman et al., 2010; Yeh and Zhu, 2007), dye or DNA- 
labeled tracers (Kittilä et al., 2019; Kittilä et al., 2020), or heat (de La 
Bernardie et al., 2018; Hermans et al., 2015; Klepikova et al., 2014; 
Somogyvári et al., 2016). The standard approach for characterizing the 
heterogeneity of fractured rocks involves estimating local hydraulic 
conductivities or permeabilities from single-hole tests and interpolating 
these values using kriging, stochastic simulations, and geostatistical 
inverse modeling (Blessent et al., 2011; Park et al., 2004; Vesselinov 
et al., 2001a, 2001b; Yeh et al., 1996). We refer to Illman (2014) for 
additional references on mapping heterogeneity by single-hole and 
single cross-hole data while the focus of this review is on the simulta-
neous interpretation of all recorded pressure, hydraulic head, or tracer 
responses. The joint inverse modeling of multiple cross-hole pumping/ 
injection or tracer tests yields an estimate of the appearance and con-
nectivity of fractures or of the distribution of the hydraulic properties of 
fracture networks depending on the choice of the conceptual model 
utilized in inverse modeling. 

2.3. Conceptual models utilized in inverse modeling 

Different conceptual models have been developed for the represen-
tation of properties of fracture networks in inversion models. In general, 
we distinguish between continuum and discrete descriptions, and be-
tween deterministic and stochastic models. The continuum models 
consist of homogeneous and heterogeneous approaches. All parameters 
necessary for the description of the system are summarized in a 
parameter vector. A schematic overview of the conceptual inversion 
models is given in Fig. 2 for a fictitious two-dimensional (2D) example. 

A continuum approach utilizes porous media parameters which are 
the spatial distributions of hydraulic conductivity K 

[
m s− 1], perme-

ability k
[
m2], or transmissivity T 

[
m2 s− 1]. In addition, specific storage 

SS 
[
m− 1], storativity S [ − ], or porosity ϕ [ − ] fields are estimated for 

transient problems. The ratio K/SS is the diffusivity D 
[
m2 s− 1]. In this 
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study, we use bold symbols to indicate that these parameters are vectors 
with one value for each element. A homogeneous model is based on a 
spatial representative elementary volume (REV) which can be applied 
for dense and highly connected fracture networks (Berkowitz, 2002; 
Dong et al., 2019; Yeh et al., 2015). In this case, the hydraulic properties 
defined for a control volume (CV) can be applied independently of the 
spatial position of the CV (Yeh et al., 2015). In practice, the REV is often 
too large in comparison to the measurement intervals to be applicable 
and a heterogeneous continuum description is necessary (Neuman, 
1987). Thereby, the hydraulic parameters are defined for small CVs 
without assuming a REV condition. The investigated area or volume is 
discretized into small porous media elements and the hydraulic pa-
rameters are estimated for each element (Dong et al., 2019; Zha et al., 
2015), as illustrated in Fig. 2a and 2c. The size of the parameter vector 
equals the number of elements for steady-state HT or PT data or twice 
the number of elements for transient problems (Zha et al., 2015). In 

order to assess the anisotropy of a system, each component of the hy-
draulic conductivity distribution can be treated as tensor to determine 
their directional and principal components. Since this approach in-
troduces numerous additional unknowns, it is typically not utilized in 
inverse modeling for individual elements or grid blocks. Instead, it is 
more common to estimate the tensor components with a least-squares fit 
to various cross-hole flow tests on a REV scale by assuming a homoge-
neous anisotropic continuum (Hsieh et al., 1985; Neuman et al., 1984). 
The validity of the approach requires that the measured data fit the 
theoretical type curves and that the entries of the hydraulic conductivity 
tensor can be estimated reliably by minimizing a least-squares error. 

A more direct representation of fractures and the anisotropy of the 
flow field is facilitated by applying a DFN model (Fig. 2b and 2d). 
Thereby, the fracture geometry is simplified to lower-dimensional ob-
jects that are 1D straight lines in 2D problems or 2D planes in 3D 
problems that are referred to as the so-called parallel plate model 

Fig. 1. 2D schematic experimental setup of pumping/injection or tracer tests (a). In this case, two boreholes and, in total, six injection and monitoring intervals are 
shown. Pumping in interval 1 causes responses in intervals 2 and 3 which are used in inverse modeling (b). 

Fig. 2. Schematic overview of conceptual inversion models for a fictious 2D example surrounding two boreholes (black lines) which are applied for the charac-
terization of fractured geologic media, heterogeneous continuum (a and c) and DFN models (b and d) and deterministic (a and b) and stochastic (c and d) models. 
Hybrid models are a combination of heterogeneous continuum and DFN models. Different realizations of the parameter vector m1,⋯,mN which are generated by 
stochastic methods, are indicated in the boxes. The resolution of results depends on the scale of the investigated area and the element size. 
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(Zimmerman and Bodvarsson, 1996). The parameters that describe the 
fracture network are basically the number of fractures and, for each 
fracture, their structural (i.e., position, orientation, fracture shape, 
length, aperture) and hydraulic parameters as scalar quantities (hy-
draulic conductivity Kf , permeability kf , or transmissivity Tf and specific 
storage SS,f or storativity Sf ) as well as the distribution of each hydraulic 
parameter within one fracture. The cubic law relates the volumetric flow 
rate to the pressure or hydraulic head gradient by the hydraulic aperture 
af to the power of three. It holds for open fractures with negligible 
surface roughness (Berkowitz, 2002; Zimmerman and Bodvarsson, 
1996). For the implementation in inversion models, the parameter 
vector of the DFN is reduced by applying assumptions and simplifica-
tions, e.g., about the fracture shape or orientation (Fischer et al., 2018c; 
Klepikova et al., 2013; Ringel et al., 2021). Therefore, the size of the 
parameter vector is the number of fractures times the number of pa-
rameters that are estimated for each fracture. Therefore, Fig. 2b and 
d vary according to the constant or variable DFN parameters specified 
for each study. 

The hydraulic parameters of the rock matrix have to be incorporated 
in the inversion problem for sites consisting of fractured porous geologic 
media. This can be accomplished by hybrid models, which superimpose 
a DFN model and a heterogeneous continuum model by a conforming 
discretization at the boundaries between fracture and matrix or transfer 
terms to couple fracture and matrix elements. A specific type of hybrid 
model is the discrete fracture matrix model that includes large 
conductive fractures that are represented explicitly by their structural 
and hydraulic properties, while smaller, less conductive fractures are 
considered as hydraulic properties of the matrix (Berre et al., 2019). 
Multi-continuum models apply different continua for fracture and ma-
trix. To date, these models have been applied only for the simulation of 
flow and transport in fractured rocks, not for inversion problems. 

Inversion models are also categorized with deterministic and sto-
chastic representations. A deterministic model applies a single param-
eter vector for describing the subsurface properties (Fig. 2a and 2b). The 
evaluated parameter vector is calibrated by minimizing an objective 
function which is the error between measured and simulated data in 
most studies (Klepikova et al., 2013). The uncertainty and non- 
uniqueness of the description of the properties of the fractured rock 
are considered by a stochastic approach that generates several re-
alizations of the parameter vector. Thereby, the parameters are char-
acterized by probability distributions and a mean parameter vector and 
its uncertainty or variance can be evaluated (Fig. 2c and 2d). An 
example of a stochastic heterogeneous continuum approach is the sto-
chastic continuum method (SCM) introduced by Neuman (1987) and 
Tsang et al. (1996) for fractured geologic media. 

2.4. Solution of the inverse problem 

In general, forward or inverse problems provide a relation between 
experimental data and the parameters that are the quantity of interest to 
be estimated from experiments. Therefore, such problems comprise the 
following elements: the input data is obtained from observations or 
measurement campaigns, while the forward operator describes the 
present system that depends on a vector of model parameters (Aster 
et al., 2018). Depending on the problem, the forward operator is an 
ordinary or partial differential equation, or a system of equations. For 
most applications, the input data contains observation errors or mea-
surement noise. The execution of the forward operator for a given 
parameter vector is a so-called forward problem, that is, the outcome of 
a tomography survey simulated based on model parameters. Thereby, 
conceptual model errors and discretization errors are introduced by 
assumptions applied to reduce the number of model parameters, sim-
plifications of the underlying physics, or through the discretization of 
the differential equation in a numerical model. 

In contrast to the forward problem, an inverse problem deals with 

finding the model parameters given the input data (Aster et al., 2018). 
Several difficulties arise for the computation of inverse problems in 
practice. Due to measurement noise and errors or simplifications in the 
forward simulations an exact fit between the data simulated with a 
parameter set and the observed data is usually not possible. In addition, 
the number of parameters describing a system is often large making the 
solution nonunique. Therefore, assuming a simulation model with 
negligible errors, known and sufficient boundary and initial conditions, 
several model parameter realizations can lead to a minimum error be-
tween the simulated and observed data and therefore, give the best es-
timate of the hydraulic and structural parameters (Carrera et al., 2005; 
Yeh et al., 2015). A reduction of the number of parameters, e.g., due to 
the computational costs of iteratively solving the inversion problem, can 
lead to an oversimplification of the problem or may introduce structural 
errors (e.g., use of an inaccurate geological model or fracture distribu-
tion in a DFN). In that case, the solution can be less reliable and un-
certainty estimates to be higher since it relies on improper physics or 
geometries despite a good fit of the simulated and observed data. 

Depending on the input data, the conceptual inversion model, the 
forward model, and the scale of the investigated domain, different 
methods for the solution to the inverse problem with HT or PT data are 
feasible. The most common methods in hydrogeology are deterministic 
optimization approaches, geostatistical methods, and stochastic sam-
pling methods. The different inversion methods for the characterization 
of fractured sites with HT, PT, and TT, the applied inversion method, 
and the results that are evaluated in each study are summarized in 
Table 1. 

A deterministic solution is derived by minimizing the misfit between 
the measured data and the results from the forward simulation. The 
optimization is implemented generally as an iterative process of 
updating the parameter vector such that the observed head or pressure 
data matches the results of the forward simulation. The steps for solving 
an optimization problem are generally described in Carrera et al. (2005). 

Travel time inversion is a specific type of inversion that applies a 
deterministic heterogeneous continuum model. The concept was 
adapted from seismic tomography to HT, PT, and TT. The basis is a 
relation between the travel time of the measured signal and the line 
integral of the reciprocal of the diffusivity (Brauchler et al., 2003). For 
advection-driven problems, such as heat transfer or tracer transport, the 
diffusivity can be replaced by the application of Darcy’s law, i.e., 
porosity, permeability, and pressure gradient (Vasco and Datta-Gupta, 
1999). For the inversion of HT data, the first derivative of the pressure 
or hydraulic head response is applied (Brauchler et al., 2013b). To 
distinguish preferential flow paths and to reduce the effects of diffusion, 
early-time diagnostics can be applied for thermal and hydraulic to-
mography (Somogyvári et al., 2016). The travel time is recorded at each 
receiver which functions as the input data for the solution of the inverse 
problem. The investigated domain is discretized and the trajectory 
length of the signal through each element is calculated, which depends 
on the material properties of each element. Then, the material param-
eters are adapted iteratively to match the observed travel times. The key 
advantages of the travel time approach are imaging of structural features 
representing high-diffusivity zones, requirement of less data for inverse 
modeling, and computational speed. However, the approach yields D 
tomograms and not K and SS tomograms that are more useful for 
groundwater flow modeling. 

A stochastic approach is based on the conditional probability of the 
parameter vector given the measured head or pressure signals. The 
sequential or the simultaneous successive linear estimator (SSLE or 
SimSLE) in Table 1 are frequently applied iterative geostatistical esti-
mation methods that rely on the stochastic heterogeneous continuum 
representation of the subsurface properties. SSLE and SimSLE are an 
extension of kriging and cokriging methods (Xiang et al., 2009; Yeh and 
Liu, 2000). The element-wise natural logarithm of K and SS are formu-
lated as multi-Gaussian processes, i.e., the parameters are characterized 
by their mean, variance, and correlation among each other (Yeh et al., 
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Table 1 
Overview of studies (field, laboratory, or synthetic) concerning the characterization of fractured media with HT, PT, and TT, the inversion method, and corresponding 
results.  

Site/Application Study Type of tomographic survey, 
data for inverse problem 

Inversion method Inversion results 

Apache Leap Research Site 
(USA) Vesselinov et al., 

(2001a,2001b) 

Transient PT Interpolation by pilot points; kriging 3D k and ϕ tomograms 

Blair Wallis fractured rock 
hydrology research field 
(USA) 

Ren et al. (2021) 
Transient HT SimSLE 2D K, SS, and D tomograms 

Göttingen (Germany) 
Liu et al. (2022) 

Thermal TT Travel time 2D K tomogram  

Liu et al. (2023) 
Tomographic slug tests Travel time and attenuation-based 

inversion 
3D K, SS, and D tomograms  

Yang et al. (2020) 
Transient HT Travel time 2D D tomogram 

Grimsel test site (Switzerland) 
Kittilä et al. (2020) 

Dye TT Travel time 2D K tomogram before and after stimulation  

Klepikova et al. 
(2020) 

Transient HT Nelder-Mead optimization Tf and Sf of 2D connectivity structure 
between injection intervals  

Meier et al. (2001) 
Steady-state and transient HT Geostatistical inversion 2D T tomogram  

Ringel et al. (2022) 
Transient HT MCMC 3D fracture probability and mean af 

Meuse/Haute-Marne 
underground research lab 
(France) 

Jalali et al. (2023) 
Transient PT Travel time and MCMC 3D D tomogram and 2D fracture probability 

Mizunami underground 
research lab (Japan) Illman et al. (2009) 

Transient HT SSLE 3D K and SS tomograms 

Zha et al. (2015) 
Transient HT SimSLE 3D K and SS tomograms 

Zha et al. (2016) 
Transient HT SimSLE 3D K and SS tomograms 

Zha et al. (2017) 
Transient HT SimSLE 3D K and SS tomograms 

Ploemeur aquifer test site 
(France) 

Dorn et al. (2013) TT Hierarchical rejection sampling (MC) Connectivity and effective transmissivity of 
3D fracture network  

Klepikova et al. 
(2014) 

Flow tomography/ Thermal 
TT 

Optimization Tf of 2D connectivity structure between 
injection intervals 

Salar de Atacama (Chile) 
Trabucchi et al. 
(2022) 

Transient drawdown data Regularized pilot point stochastic 
inversion 

2D K tomogram 

Terrieu (France) 
Fischer et al., 
(2017b) 

Steady-state HT Cellular automata-based deterministic 
inversion 

2D T tomogram  

Fischer et al., 
(2018a) 

Oscillatory HT Interpretation of amplitude/ phase 
offset 

Interpretation of the connection between 
boreholes as conduit, matrix, or hybrid  

Fischer et al., 
(2018b) 

Oscillatory HT Cellular automata-based deterministic 
inversion 

2D T and S tomograms  

Fischer et al. (2020) 
Steady-state HT Discrete deterministic network 

inversion 
Tf and 2D DFN structure; 2D T distribution 
of matrix  

Wang et al. (2016) 
Steady-state HT Sparse nonlinear optimization 2D T tomogram  

Wang et al. (2017) 
Steady-state HT Transition probability geostatistics 

and stochastic Newton MCMC 
Stochastic EPM with three facies (karst, 
fracture, bedding); 2D T tomogram for each 
realization 

Waiwera aquifer (New Zealand) Somogyvári et al. 
(2019) 

Borehole temperature profiles MCMC 2D fracture probability 

Former Naval Air Warfare 
Center (NAWC), West 
Trenton (USA) 

Tiedeman and 
Barrash (2020) 

Transient HT Bayesian geostatistical approach 3D K tomogram 

Xieqiao coal mine (China) 
Wang et al. (2021) 

Transient HT SimSLE 2D K and SS tomograms 

Xindong coal mine (China) 
Mao et al. (2018) 

Transient HT SimSLE 2D K and SS tomograms 

Laboratory studies 
Brauchler et al. 
(2003) 

Transient PT Travel time 3D D tomogram  

Brauchler et al., 
(2013a) 

Gas TT Travel time 3D interstitial velocity tomogram  

Poduri et al. (2021) 
Transient HT Interpolation at pilot points by 

ordinary kriging 
2D K and SS tomograms  

Sharmeen et al. 
(2012) 

Transient HT SSLE 2D K and SS tomograms  

Zhao et al. (2021) 
Transient HT SSLE 2D K and SS tomograms 

Synthetic test cases Chen et al. (2023) Transient HT Hierarchical parameterization, deep 
learning-based ensemble smoothing 

2D fracture probability 

(continued on next page) 
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1996; Zha et al., 2015; Zhu and Yeh, 2005). The estimate of the condi-
tional mean parameter vector is updated iteratively according to the 
misfit between measured and simulated data weighted by a coefficient 
matrix. The coefficient matrix depends on the covariance and cross- 
covariance matrix and is calculated by a first-order approximation of 
the sensitivity of the simulated data to the current parameter estimate 
(Yeh et al., 1996). Additional head or pressure signals can be included 
either sequentially or simultaneously. The travel time inversion and the 
geostatistical inversion as implemented by SimSLE are compared by Qiu 
et al. (2023) for a heterogeneous synthetic test case. We refer to the 
respective references for further inversion algorithms, i.e., to Cardiff and 
Barrash (2011), Kitanidis (1995), and Tiedeman and Barrash (2020) for 
the quasilinear geostatistical algorithm, to Blessent et al. (2011), Park 
et al. (2004), and Wang et al. (2017) for the transition probability 
geostatistical method, and to Dorn et al. (2013), Ringel et al. (2021), and 
Somogyvári et al. (2017) for stochastic sampling methods, such as 
Monte Carlo (MC) or Markov chain Monte Carlo (MCMC) sampling. The 
parameter vector can be updated at specific time steps using techniques 
such as Kalman filtering (Dodangeh et al., 2023; Panzeri et al., 2013) or 
history matching (White, 2018) when new data is obtained. 

3. Summary of tomography experiments and synthetic 
applications 

The overview in Table 1 compares different inversion methods for 
the characterization of fractured media with an emphasis on the ob-
tained results. Table 1 demonstrates that most field studies rely on a 

heterogeneous continuum inversion model which allows the evaluation 
of distributions of porous media parameters as shown in Fig. 2a and 2c 
for a fictious example in 2D and accordingly in 3D. The variance of the 
tomogram of estimated parameters can be analyzed additionally in the 
case of stochastic conceptual models which are the geostatistical 
algorithms. 

The field studies summarized in Table 1 are grouped in Fig. 3 ac-
cording to the scale and dimension of the investigated region and the 
type of conceptual inversion model. Fig. 3 shows that most studies 
applying a DFN model are smaller scale, while heterogeneous contin-
uum methods are larger scale, from decameters to kilometers. The to-
mograms of porous media parameters can be improved by the 
incorporation of specific prior knowledge (Poduri et al., 2021; Zha et al., 
2017; Zhao et al., 2021) or through the analysis at high spatial resolu-
tion to distinguish between conduit and matrix elements in the tomo-
gram (Fischer et al., 2017b; Fischer et al., 2018b). Further information 
about the fracture network can be gained by particle transport simula-
tions to investigate fracture connectivity (Tiedeman and Barrash, 2020) 
or the comparison with forward simulations of synthetic test cases with 
similar properties as the site (Sharmeen et al., 2012; Zha et al., 2015). 

The studies applying a deterministic DFN model (Fig. 2b) estimate 
less parameters of the fracture network than stochastic DFN models 
since the stochastic approach can consider the non-unique relation be-
tween head or pressure signals and the hydraulic and structural prop-
erties of the DFN model. Klepikova et al. (2014) and Klepikova et al. 
(2020) estimate transmissivity and storativity (Klepikova et al., 2020) of 
predefined structures that connect the injection and observation 

Table 1 (continued ) 

Site/Application Study Type of tomographic survey, 
data for inverse problem 

Inversion method Inversion results  

Cliffe et al. (2011) 
Steady-state HT Basis Vector Conditioning/ Bayesian 

Conditioning 
Tf of 3D fractures  

Dodangeh et al. 
(2023) 

Oscillatory HT and TT Ensemble Kalman filtering Test case 1: Fracture location and aperture 
Test case 2: Fracture density  

Dong et al. (2019) 
Transient HT SimSLE 2D K and SS tomograms  

Fischer et al., 
(2017a) 

Steady-state HT Cellular automata-based deterministic 
inversion 

2D T tomogram  

Fischer et al., 
(2018c) 

Steady-state HT Discrete deterministic network 
inversion 

Tf and 2D DFN structure; 2D T distribution 
of matrix  

Hao et al. (2008) 
Transient HT SSLE 2D K and SS tomograms  

Jiang et al. (2023) Thermal TT and 
microseismicity events 

MCMC 2D fracture probability  

Klepikova et al. 
(2013) 

Drawdown and cross- 
borehole flow tomography 

Quasi-Newton optimization Tf of 2D connectivity structure between 
injection intervals  

Le Goc et al. (2010) 
Steady-state HT Hierarchical optimization Tf of 2D flow channels  

Li et al. (2021) 
Steady-state and transient HT SimSLE 2D K and SS tomograms  

Ma et al. (2020) Transient production curves Hierarchical parameterization, 
optimization, history matching 

2D fracture probability  

Mohammadi and 
Illman (2019) 

Steady-state and transient HT SimSLE 2D K and SS tomograms  

Ni and Yeh (2008) 
Transient PT SSLE 3D k and ϕ tomograms  

Redoloza et al. 
(2023) 

TT Genetic algorithm Population of DFN models  

Ringel et al. (2019) Transient HT/ TT MCMC 2D fracture probability  

Ringel et al. (2021) 
Transient HT MCMC 3D fracture probability and mean af  

Somogyvári et al. 
(2017) 

TT MCMC 2D fracture probability  

Vu and Jardani 
(2022) 

Steady-state HT Convolutional neural networks 2D fracture geometry  

Vu and Jardani 
(2023) 

Steady-state HT Convolutional neural networks 2D fracture geometry and T tomogram of 
matrix  

Wang et al. (2023) 
Steady-state and transient HT SimSLE 2D K and SS tomograms  
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intervals. Fischer et al. (2020) partition the investigated area in sub-
spaces and adjust the fracture properties in each subspace node-to-node 
according to six predefined structure possibilities. In a second step, the 
transmissivity of the fracture element is calibrated. Jalali et al. (2023), 
Ringel et al. (2022), and Somogyvári et al. (2019) utilize MCMC sam-
pling to generate DFN realizations and estimate the number of fractures 
and position and length of each fracture which are evaluated as map of 
fracture probabilities (Fig. 2d). In these studies, the fracture shape is 
simplified and the possible fracture orientations are limited to two 
fracture sets according to borehole logs of fracture properties. In addi-
tion to the structural properties of fractures, Ringel et al. (2022) also 
adjust the hydraulic aperture of each fracture. 

4. Comparison between DFN and continuum conceptual models 

In the following, we compare continuum and DFN models and 
describe potential drawbacks and difficulties in the implementation of 
the respective conceptual model based on state-of-the-art inversion al-
gorithms (Section 2.4) and the results of field, laboratory, and synthetic 
studies (Table 1). 

Heterogeneous continuum models result in smooth images of hy-
draulic parameters due to being representative of the hydraulic prop-
erties of fracture and matrix. For this reason, the continuum 
representation provides good results for fractured rocks with a perme-
able matrix (Liu et al., 2022; Liu et al., 2023; Yang et al., 2020). 
Moreover, Dong et al. (2019) demonstrate for three synthetic test cases 
with an increasing fracture intensity that the accuracy of the K and SS 
tomogram and the validation, which is the prediction of observed heads 
not used for the inversion, improves with an increased fracture intensity. 
The authors also show that the predicted response can be overestimated 
for receiver points not connected to the fracture network. Instead of 
differentiating between the influence of single fractures and between 
fractures and matrix, the specification of high and low conductive zones 
of the investigated volume is potentially more important, especially for 
large scale HT surveys. Therefore, continuum models have been 
preferred for characterizing sites ranging from hundreds of meters to 
kilometers in scale (Illman et al., 2009; Mao et al., 2018; Trabucchi 
et al., 2022; Wang et al., 2021; Zha et al., 2015; Zha et al., 2016; Zha 
et al., 2017). DFN models, except for Somogyvári et al. (2019), are not 
applied at these scales, as shown in Fig. 3. 

In contrast, the DFN conceptual model can delineate the strong 

heterogeneity of the K and SS distribution caused by the appearance of a 
fracture network in rocks with a low-permeability matrix and on a small 
scale of the investigated site (Fig. 3). The major drawback of the DFN 
model is the definition of reasonable assumptions to reduce the number 
of parameters to be adjusted by the inversion. For example, assumptions 
regarding active and inactive fractures in terms of flow and transport 
may need to be made. For this reason, the resulting DFN models are like 
a projection of the real fracture network onto a lower-dimensional 
subspace. For instance, Fischer et al. (2020), Klepikova et al. (2020), 
Ringel et al. (2022), and Somogyvári et al. (2019) estimate constant 
hydraulic properties within a fracture segment and the fracture shape is 
simplified. Constraints regarding the DFN properties and especially a 
fixed DFN pattern can lead to a less accurate geological model which 
causes high errors when predicting independent validation results and in 
general unrealistic parameter estimates. This is a more important issue 
for deterministic DFN models since the number of parameters has to be 
reduced for deterministic approaches to avoid an underdetermined 
system of equations for the solution of the optimization problem. In 
addition, the setup of constraints and simplifications is also more chal-
lenging over a larger scale. The fracture transmissivity is assumed to 
depend on the hydraulic aperture according to the cubic law in Jalali 
et al. (2023), Ringel et al. (2022), and Somogyvári et al. (2019). The 
cubic law (Witherspoon et al., 1980) was derived by simplifying the 
Navier-Stokes equations for small Reynolds numbers, which implies 
viscous instead of inertial flow behavior, small changes of the velocity in 
the fracture plane, and no velocity component normal to the fracture 
plane (Zimmerman and Bodvarsson, 1996). Accordingly, the derived 
transmissivity does not consider a varying surface roughness and contact 
areas between the two surfaces even with a local cubic law assumption 
(Berkowitz, 2002). The reliance of the transmissivity on the hydraulic 
aperture can be avoided by estimating fracture conductivity and aper-
ture independently. However, that increases the size of the parameter 
vector of the inversion problem by the hydraulic conductivity of each 
fracture segment. 

The application of a DFN conceptual model for fractured porous 
media requires one to distinguish between the effects of fracture and 
matrix on flow. This can be achieved by either reasonable estimates for 
the initial values of the hydraulic conductivity of fracture and matrix or 
by suitable upper and lower limits on both conductivities (Fischer et al., 
2020). 

Overall, we conclude that the continuum representation is well 

Fig. 3. Differentiation of field studies (Table 1) according to the conceptual inversion model, the dimension, and the scale of the investigated region. Here, scale 
refers to the maximum length of the evaluated tomogram of hydraulic or fracture parameters. The bars on the chart indicate the extent of the scale on which each 
conceptual model was used. 
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suited where the influence of single fractures is small, which is the case 
for high fracture densities, large scales, and fractured porous media. The 
DFN model has advantages where the quantification of these effects is of 
interest. Therefore, we recommend the DFN conceptual model on a 
generally smaller scale and for a low-permeability rock matrix, such as 
crystalline rock. The comparison is summarized in Table 2 by potential 
target applications and difficulties of both conceptual models. 

The computational costs of solving the inverse problem depend not 
directly on the choice between a continuum or a DFN approach, but on 
the implemented forward model and thereby, on the scale of the 
investigated domain, the simulation time, and the temporal and spatial 
discretization. Due to the explicit discretization of fractures in the DFN 
model, the computational costs of the DFN model increase with fracture 
density. The necessary number of forward simulations depends on the 
convergence properties of the applied inversion algorithm. Travel time 
inversion is an exception since this method is based on calculated travel 
times through ray tracing instead of forward simulations. Because of 
this, only the volume between boreholes can be characterized with the 
travel time inversion algorithm (Brauchler et al., 2003; Qiu et al., 2023). 

5. Summary and research directions 

The inversion of HT and PT data to obtain an image of the subsurface 
properties is an ongoing challenge with several possible directions for 
future research. Generally speaking, there is no best conceptual model 
that can handle all possible geologic applications and scales. However, 
the advantages of the DFN and continuum conceptual models can be 
combined, for example by locating potentially highly fractured zones 
according to the zones in the tomograms obtained from a heterogeneous 
continuum approach that indicate a high hydraulic conductivity or low 
specific storage. Then, the properties of these zones can be inferred with 
a DFN model to evaluate the fracture network further applying each 
conceptual model at the scale where it is more suitable. In addition, the 
hydraulic conductivity tomograms and the variance of the results as 
obtained from stochastic inversion algorithms can be applied directly as 
element-wise Gaussian prior distribution in the Bayesian equation or as 
a proposal function for MCMC algorithms. This offers us an opportunity 

for the joint inversion of discrete and continuum approaches. 
The quantification of reliability and appropriate resolution of the 

inversion results are still open questions (Illman, 2014). A direct eval-
uation of the error or visual comparison between the inversion results 
and the reality is only possible for synthetic or laboratory test cases. For 
field studies, the reliability and implementation of the applied inversion 
method can be verified in general by developing the inversion algorithm 
with several synthetic and laboratory test cases. The inversion results of 
a field site can be validated by simulating the outcome of hydraulic, 
pneumatic, or tracer tests that were not used for the solution of the 
inversion problem and by comparing predicted and measured draw-
down, pressure change or tracer breakthrough data. However, the 
simulation of tracer breakthrough data requires additional parameters 
that are not estimated with HT or PT due to a different forward problem, 
such as heat capacity or thermal conductivity for heat tracer tests. In 
addition, the inversion results can be checked by comparison with other 
studies and data (Illman et al., 2009; Ringel et al., 2022; Trabucchi et al., 
2022). Overall, the number of cross-hole pumping/injection tests, the 
scale of the site, the size of the elements in the tomogram, and the 
conceptual simplifications made in cases where a DFN model is applied 
can all impact the reliability of the inversion results. A challenge for 
future research is identifying the most useful additional information to 
maximize the reliability of the tomogram of hydraulic properties or the 
inferred DFN model, for example the best-suited complementary 
geophysical method. The ideal field data to complement the tomo-
graphic methods discussed here will depend on the prior information 
stage, the conceptual model of the tomographic inversion, and the scale 
of the site. For instance, a geologic model of the site, geophysical 
inversion results, or hydraulic parameter estimates from single-hole and 
cross-hole pumping tests can be applied as prior distributions for HT or 
PT inversion. Fracture properties as obtained by outcrops or optical or 
acoustic televiewer logs can support the definition of reasonable con-
straints on structural parameters of fractures. Flowmeter and/or 
groundwater temperature surveys can be conducted to identify active 
versus inactive fractures. In porous media aquifers, cross-hole flowmeter 
surveys have also shown to provide valuable information on connec-
tivity to improve HT estimates (Luo et al., 2023). These additional 
studies can be used to confirm the general trend and the qualitative 
hydraulic properties, but not the exact values of hydraulic parameters or 
fracture probabilities. Moreover, for the DFN approach, the reliability 
depends mainly on the simplification on the DFN structure to reduce the 
number of unknown parameters. 

The application of machine learning algorithms such as neural net-
works to HT is still in its early stages since machine learning has been 
demonstrated only for 2D synthetic test cases. Deep learning algorithms 
attempt to link hydraulic head measurements to fracture network pat-
terns (Vu and Jardani, 2022) and/or hydraulic parameters (Guo et al., 
2023; Vu and Jardani, 2023) through various neural network algo-
rithms. The algorithms require a large training dataset to handle data-
sets not covered during the learning phase. For example, Vu and Jardani 
(2022, 2023) utilized neural networks to map a simple 2D fracture 
network embedded in a heterogeneous aquifer through the inversion of 
hydraulic head data obtained from a HT survey. In this synthetic study, 
the authors demonstrated the potential for neural networks to map the 
fracture network, but these studies rely on a dense network of obser-
vation wells which might not be available for many settings in practice. 
Moreover, the accuracy of the approach depends heavily on the dataset 
utilized during the training of the neural network, and the quality of the 
results is still an open question, especially in practice with simplifica-
tions in the conceptual model or potentially insufficient boundary and 
initial conditions applied for the forward simulations. Further work is 
needed to make meaningful comparisons against existing inversion ap-
proaches and to evaluate if machine learning and traditional approaches 
could be combined. 

An important direction for future research is the applicability of the 
inversion results to simulate and predict groundwater flow or 

Table 2 
Overview of possible applications and drawbacks for continuum and DFN con-
ceptual inversion models.   

Potential target 
applications 

Difficulties 

Heterogeneous Large scale Smooth tomograms 
continuum 

models 
High fracture density Hydraulic parameters 

representative of both fracture and 
matrix  

Fractured porous media  
DFN models Small scale Simplifications concerning 

fracture shape and distributions of 
DFN parameters  

Low-permeability rock 
matrix 

Reliability of cubic law for 
estimating fracture transmissivity  

Quantification of flow 
properties of single 
fractures  

Heterogeneous Large scale Smooth tomograms 
continuum 

models 
High fracture density Hydraulic parameters 

representative of both fracture and 
matrix  

Fractured porous media  
DFN models Small scale Simplifications concerning 

fracture shape and distributions of 
DFN parameters  

Low-permeability rock 
matrix 

Reliability of cubic law for 
estimating fracture transmissivity  

Quantification of flow 
properties of single 
fractures   
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concentration data independent of the pumping or tracer tests used for 
the inversion and, in a next step, also to conduct coupled thermal-
–hydraulic-chemical–mechanical (THMC) process simulations. For 
instance, hydromechanical (HM) simulations use DFNs generated ac-
cording to analogue or borehole mapping, statistical data, such as 
fracture length, orientation, and location distributions, or geo-
mechanical DFNs (Lei et al., 2017), but no DFNs or tomograms of hy-
draulic properties inferred with HT or PT data are applied. Similar to the 
validation of HT or PT inversion results with tracer tests, not all pa-
rameters necessary for these simulations can be estimated with HT or 
PT. Because of the different forward simulation problem, one has to rely 
on additional values from the literature or conduct further studies. The 
precision of simulations or predictions based on inversion results is 
highly dependent on the quality of the inversion results as described in 
the previous paragraph. Furthermore, the accuracy of supplementary 
values that are not estimated by HT or PT inversion must also be 
considered. By employing stochastic conceptual models and by carrying 
out simulations with different realizations of the parameter vector, we 
can obtain an estimate of the uncertainty of the prediction. Another 
point is selecting the appropriate conceptual inversion model based on 
the scope of the simulation. When the contribution of the rock matrix 
cannot be ignored, as in situations involving matrix diffusion, sorption, 
or thermal conduction, a continuum model is favorable (Hadgu et al., 
2017). The opening of fractures and the increase of the fracture aperture 
as relevant for geothermal applications can be modeled more directly by 
the DFN conceptual model. A next step is linking the static character-
ization with HT or PT and the dynamic modeling and monitoring during 
the operation. This allows for an update of the inversion results by real- 
time or time-lapse inversion and, with the updated DFN parameters or 
hydraulic properties, the in-situ optimization and control of the relevant 
operation parameters. 
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Saar, M.O., Loew, S., Driesner, T., Maurer, H., Giardini, D., 2018. The seismo- 
hydromechanical behavior during deep geothermal reservoir stimulations: open 
questions tackled in a decameter-scale in situ stimulation experiment. Solid Earth 9 
(1), 115–137. https://doi.org/10.5194/se-9-115-2018. 

Armand, G., Leveau, F., Nussbaum, C., de La Vaissiere, R., Noiret, A., Jaeggi, D., 
Landrein, P., Righini, C., 2014. Geometry and properties of the excavation-induced 
fractures at the meuse/haute-marne URL Drifts. Rock Mech Rock Eng 47 (1), 21–41. 
https://doi.org/10.1007/s00603-012-0339-6. 

Aster, R.C., Borchers, B., Thurber, C.H., 2018. Parameter Estimation and Inverse 
Problems. Elsevier, Amsterdam, Netherlands, Kidlington, Oxford, England, 
Cambridge, Massachusetts.  
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Pavičić, I., Galić, I., Kucelj, M., Dragičević, I., 2021. Fracture system and rock-mass 
characterization by borehole camera surveying: application in dimension stone 
investigations in geologically complex structures. Appl. Sci. 11 (2), 764. https://doi. 
org/10.3390/app11020764. 

Poduri, S., Kambhammettu, B., Gorugantula, S., 2021. A new randomized binary prior 
model for hydraulic tomography in fractured aquifers. Groundwater 59 (4), 
537–548. https://doi.org/10.1111/gwat.13074. 

Qiu, H., Hu, R., Luo, N., Illman, W.A., Hou, X., 2023. Comparison of travel-time and 
geostatistical inversion approaches for hydraulic tomography: Synthetic modeling 
study on data density and well configuration issues. J. Hydrol. 618, 129247 https:// 
doi.org/10.1016/j.jhydrol.2023.129247. 

Redoloza, F., Li, L., Davis, A., 2023. Stochastic inversion of discrete fracture networks 
using genetic algorithms. Adv. Water Resour. 178, 104477 https://doi.org/10.1016/ 
j.advwatres.2023.104477. 

Ren, S., Zhang, Y., Jim Yeh, T.-C., Wang, Y., Carr, B.J., 2021. Multiscale hydraulic 
conductivity characterization in a fractured granitic aquifer: the evaluation of scale 
effect. Water Resour. Res., 57 (9), e2020WR028482. 10.1029/2020WR028482. 

Ren, S., Gragg, S., Zhang, Y., Carr, B.J., Yao, G., 2018. Borehole characterization of 
hydraulic properties and groundwater flow in a crystalline fractured aquifer of a 
headwater mountain watershed, Laramie Range, Wyoming. J. Hydrol. 561, 
780–795. https://doi.org/10.1016/j.jhydrol.2018.04.048. 

Ringel, L.M., Jalali, M., Bayer, P., 2021. Stochastic inversion of three-dimensional 
discrete fracture network structure with hydraulic tomography. Water Resour. Res., 
57 (12), e2021WR030401. 10.1029/2021WR030401. 
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